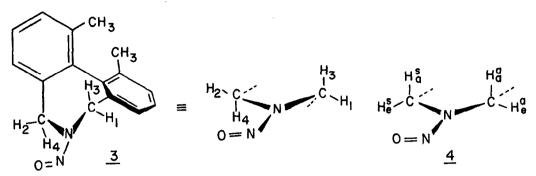

Tetrahedron Letters No. 27, pp. 2515-2518, 1971. Pergamon Press. Printed in Great Britain.

EFFECTS OF STEREOCHEMISTRY ON THE STABILITY OF ALPHA-NITROSAMINO CARBANIONS

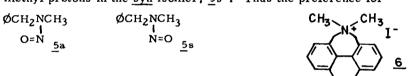

Robert R. Fraser and Yuk Y. Wigfield Department of Chemistry, University of Ottawa, Ottawa, Canada (Received in USA 10 March 1971; received in UK for publication 8 June 1971)

Evidence for the formation of alpha-nitrosamino carbanions was recently provided by Keefer and Fodor¹ who observed the base-catalysed H-D exchange of the protons alpha to the nitrosamino group in 1. The explanation suggested by the authors for the lability of these protons (in the presence of 1.3 M NaOD in D_2O at 100^O) was that the carbanion was stabilized by the positive charge on the nitrogen as a result of resonance involving 2a since "canonical structures involving resonance delocalization cannot be formulated".

In view of the much more rapid exchange observed for 1 than for quaternary ammonium salts investigated by other workers², and the possibility that resonance stabilization might indeed occur via contribution 2b, we have investigated the influence of structure and stereochemistry on this interesting exchange reaction.

The conformationally rigid nitrosamine, N-nitroso-6, 7-dihydro-1, 11-dimethyl-5Hdibenz[c, e]azepine, $\underline{3}^3$, was chosen for this study. Because rotation about the central biaryl bond is prevented by the methyl groups in positions 1 and 11⁴, and rotation about the N-N bond is slow, the four protons <u>alpha</u> to the nitrosamino function are magnetically nonequivalent. In the 100 MHz NMR spectrum of 3 in CDCl₃ four doublets appear for the four <u>alpha</u> protons at $\tau 4.546$ (H₁), 4.588 (H₂), 5.250 (H₃) and 6.591 (H₄). The geminal coupling constants between the diastereotopic pairs were J_{1,3} = 13.5 Hz and J_{2,4} = 14.9Hz. These assignments were made in analogy with those of Chow and Colon⁵ for the <u>alpha</u> protons of N-nitroso-4-benzylpiperidine, <u>4</u>. It can be seen as depicted in the 3dimensional formulae for <u>3</u> and <u>4</u>, that the <u>alpha</u> protons in <u>3</u> and <u>4</u> have almost identical dispositions with respect to the nitrosamino group. This presumably causes the similarity in shifts for H₂, H₃ and H₄ relative to H₁ in both compounds.

Because of this similarity in geometry, we will refer to H_3 and H_4 as quasi-axial, H_1 and H_2 as quasi-equatorial. In order to confirm these assignments, the effect of added $Eu(DPM)_3$ on the chemical shifts of <u>3</u> was determined. The downfield shifts induced by the addition of 0. 14 equivalents of $Eu(DPM)_3$ to <u>3</u> in CCl₄ were 0. 56, 1. 34, 0. 53 and 0. 93 ppm for H_1 - H_4 respectively. The observed order of magnitudes $H_2 > H_4 > H_1 > H_3$ is the same as the order of the distances between these protons and the oxygen atom as measured from Dreiding models. In view of the established distance dependence of these shifts⁶, the assignments are confirmed.


Exchange of the <u>alpha</u> protons of <u>3</u> in <u>t</u>-butanol-O-<u>d</u> was followed by NMR integration measurements over a time interval sufficiently short to ensure that rotation about the N-N bond is negligible. For <u>3</u> in <u>t</u>-butanol-O-<u>d</u>, this rate of rotation was determined by measuring the redistribution of a deuterium atom stereoselectively substituted in place of H₄. The measured half-life for randomization of deuterium between the two quasi-axial positions was 10 hr. at 33°. The sample used for this purpose had been prepared by treating <u>3</u> in THF at -70° with one equivalent of methyl lithium, then quenching by rapid addition of D₂O. The resultant <u>3</u>-d₁ contained only 10% of residual H₄ and 91% of residual H₃ (deuteration at this position probably results from rotation about the N-N bond during work-up)^{*}.

In view of this 10 hr. half-life for the process which interconverts <u>syn</u> and <u>anti</u> protons, rotation will be negligble (< 3%) during a kinetic run of thirty min.or less. This time limitation required the use of three different concentrations of potassium-<u>t</u>-butoxide for the exchange experiments, the results of which appear in the table.

Conc. of KO-t-bu	H	Н ₂	Н3	H ₄
0.006 M		1		> 30
0.10		2.7	1	
0.20	1		3.5	
Relative rates	1	10	3.5	> 300

* There is a large solvent effect on the rate of rotation of the nitroso group in 3, the halflife in CDC13 being only 80 minutes. When a 0.006 M concentration of base was used, a 70% diminution in the H_4 signal was the only observable exchange after 27 min. If exchange of up to 5% of H_2 went undetected during this time then a lower limit of 30:1 can be calculated for the relative rate H_4/H_2 . Rate constants for the exchanges in 0.1 and in 0.2 M solutions of base were obtained by monitoring the exchange at five intervals covering more than 50% exchange of the more labile proton. From these data the overall relative rates were derived.

The large preference for exchange of H_4 over H_2 and the lesser preference for H_3 over H_1 are believed to reflect the stereochemical requirement for carbanion stabilization via the resonance interaction depicted in 2b, i.e. overlap is greater for the carbanions derived from abstraction of the quasi-axial protons. The difference in these two relative rates is likely caused by unequal steric effects in the syn and anti positions. A steric influence of the biaryl system cannot be responsible for the above rates as it has been shown that, in the closely related thiepin dioxide system⁷, the quasi-axial protons are more hindered. One other factor, preferred stabilization of the carbanions derived from H_4 and H_3 via overlap with the benzene rings also appears negligible. This preference is small and should amount to only 30% of the total accelerating influence of the benzene rings⁷. Acceleration of a benzene ring relative to hydrogen was found to be 2.3 by measurement of the rates of exchange of the benzyl protons in the <u>anti</u> nitrosamine $5a^8$ relative to the methyl protons in the <u>syn</u> isomer, $5s^8$. Thus the preference for

exchange of H_4 over H_2 and H_3 over H_1 can reasonably be attributed to the geometric preference for resonance stabilization of the resultant carbanions^{*}.

Evidence against the importance of an ylide type of stabilization is perhaps more conclusive. In another set of exchange experiments the quaternary iodide, $\underline{6}^4$, when heated at 80° for 45 hours then at 100° for 24 hours in <u>t</u>-butanol-O-<u>d</u>:CD₃OD(1:4.1) containing 0.3 M CD₃ONa, failed to undergo exchange. In contrast, at 35° in the same medium (0.22 M in CD₃ONa), the half-life for H₄ in <u>3</u> was 20 min. These results clearly * A referee has proposed that the preference for abstraction of H₄ over H₂ may be due to steric retardation of attack by base at H₂ in view of the established instability of <u>alpha</u> equatorial methyl groups in nitrosopiperidines⁹. Such a steric effect would be markedly less in the transition state for exchange of H₂ but it could nevertheless have an influence on the relative rate H₄/H₂ eliminate ylide type stabilization as being important for the nitrosamino carbanions derived from 3.

The observation of the faster exchange of syn than anti protons in 3 is perhaps not ununusual. A similar stereochemical course has been observed in the base-catalysed isomerization of allyl to propenyl ethers¹⁰. For example <u>t</u>-butoxide-catalysed isomerization of allyl phenyl ether gave 97% cis phenyl propenyl ether in glyme and 99% cis ether in dimethylsulfoxide. Coordination of the cation with the terminal carbon and ether oxygen of the cis carbanion was proposed to explain the preferential formation of <u>cis</u> product. A similar coordination of potassium with the carbon and oxygen atoms in the <u>syn</u> anion may account for the greater exchange rate of the <u>syn</u> protons.

We thank the National Research Council of Canada for financial support of this research.

References

- 1. L. K. Keefer and C. H. Fodor, J. Amer. Chem. Soc., 92, 5747 (1970).
- W.v. E. Doering and A. K. Hoffmann, <u>ibid.</u>, <u>77</u>, 521 (1955); M. Saunders and E. H. Gold, <u>ibid.</u>, <u>88</u>, 3376 (1966).
- 3. Treatment of the parent azepine with nitrous acid gave 3, m. p. 123-123.5°. Satisfactory C, H and N analyses were obtained for both the azepine and the nitrosamine.
- K. Mislow, M.A.W. Glass, H. B. Hopps, E. Simon and G. H. Wahl, Jr., J. Amer. Chem. Soc., 86, 1710 (1964).
- 5. Y. L. Chow and C. J. Colon, Can. J. Chem., 46, 2827 (1968).
- 6. C. C. Hinckley, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 5160 (1969); C. C. Hinckley, <u>J. Org. Chem.</u>, <u>35</u>, 2834 (1970); J. K. M. Sanders and D. H. Williams, <u>Chem. Comm.</u>, 422 (1970);
 P. V. Demarco, T. K. Elzey, R. B. Lewis and E. Wenkert, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 5734 (1970); G. H. Wahl, Jr., and M. R. Peterson, Jr., <u>Chem. Comm.</u>, 1167 (1970); R. R. Fraser and Y. Y. Wigfield, <u>ibid.</u>, 1471 (1970).
- 7. R.R. Fraser and F. J. Schuber, Chem. Comm., 1474 (1969).
- 8. G. J. Karabatsos and R. A. Taller, J. Amer. Chem. Soc., 86, 4373 (1964).
- 9. Y.L.Chow, C.J.Colon and J.S. Tam, Can. J. Chem., 46, 2821 (1968).
- P. Caubere and M. Hochu, <u>Bull. Soc. Chim. Fr.</u>, 459 (1968); T. J. Prosser, <u>J.</u>
 <u>Amer. Chem. Soc.</u>, <u>83</u>, 1701 (1961); C. C. Price and W. H. Snyder, <u>ibid.</u>, <u>83</u>, 1773 (1961).